Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Biosci. j. (Online) ; 38: e38065, Jan.-Dec. 2022. tab, graf
Article in English | LILACS | ID: biblio-1396661

ABSTRACT

The objective of this study was to evaluate the agronomic efficiency of rhizobia strains already approved or in the selection stage for cowpea, in the Recôncavo da Bahia region, Brazil. Two field experiments were performed in the municipalities of Cruz das Almas and Maragogipe, Bahia, Brazil. A randomized block design was used with seven nitrogen sources and four replicates. Nitrogen sources consisted of the strains UFRB FA51B1, UFRB BA72C2-1, UFLA 03-164T, UFLA 03-84, INPA 03-11B, and two controls without inoculation, one with mineral nitrogen and another without. All the strains nodulated cowpea. The efficiency of the strains was determined by the number of nodules, nodule dry matter, total dry matter, grain yield, nitrogen accumulation in shoots and grain, and relative efficiency. The strain UFLA 03-164T can be recommended for biomass production, green manure, and promotion of grain yields in both soils. In Maragogipe, the UFLA 03-84 and INPA 03-11B strains can be recommended for biomass production, green manure, and promotion of grain yields. The UFLA 03-164T strain showed great potential to promote and grain yield in the two municipalities studied. The strain INPA 03-11B can be recommended for Maragogipe soil. UFLA 03-84 can also be recommended to increase grain yield in Cruz das Almas.


Subject(s)
Rhizobium , Vigna , Nitrogen Fixation
2.
Acta sci., Biol. sci ; 43: e48257, 2021. graf, tab
Article in English | LILACS, VETINDEX | ID: biblio-1460968

ABSTRACT

Aspergillus niger KIJH was grown in solid and submerged fermentation using leaves and roots (with and without bark) of plants typically from Brazilian semiarid as substrate to produce a multienzymatic extract, which was characterised for its potential biotechnological applications. Solid-state fermentation (SSF) was applied to select the most promising plants biomass as induction substrates for the production of hydrolytic enzymes by fungus. The best biomasses were used as substrate in submerged fermentation (SmF) assays at two scales. Samples of up scale fermented culture were partially purified by ultrafiltration and activity and pH and temperature stability of CMCase and xylanase were evaluated. A. niger KIJH produced hydrolytic enzymes under SSF containing unconventional plants biomass from Brazilian semiarid. In SmF conditions, maximum CMCase (0.264 U mL-1) and xylanase (1.163 U mL-1) activities were induced by Jacaratia corumbensis. Scaling up the SmF to 500 mL of medium was able to maintain constant the production of CMCase (0.346 U mL-1) and xylanase (1.273 U mL-1) on the fermented culture. Ultrafiltered and concentrated extract presented CMCase activities practically constant in all temperature ranges (30-80°C) and pH (3.0-9.0), while xylanase optimum activity temperature was 50°C and pH in the range of 3.0 to 5.0. CMCase activity remained stable for 24 hours at 50°C


Subject(s)
Aspergillus niger/growth & development , Biomass , Fermentation , Substrates for Biological Treatment
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1461027

ABSTRACT

Aspergillus niger KIJH was grown in solid and submerged fermentation using leaves and roots (with and without bark) of plants typically from Brazilian semiarid as substrate to produce a multienzymatic extract, which was characterised for its potential biotechnological applications. Solid-state fermentation (SSF) was applied to select the most promising plants biomass as induction substrates for the production of hydrolytic enzymes by fungus. The best biomasses were used as substrate in submerged fermentation (SmF) assays at two scales. Samples of up scale fermented culture were partially purified by ultrafiltration and activity and pH and temperature stability of CMCase and xylanase were evaluated. A. niger KIJH produced hydrolytic enzymes under SSF containing unconventional plants biomass from Brazilian semiarid. In SmF conditions, maximum CMCase (0.264 U mL-1) and xylanase (1.163 U mL-1) activities were induced by Jacaratia corumbensis. Scaling up the SmF to 500 mL of medium was able to maintain constant the production of CMCase (0.346 U mL-1) and xylanase (1.273 U mL-1) on the fermented culture. Ultrafiltered and concentrated extract presented CMCase activities practically constant in all temperature ranges (30-80°C) and pH (3.0-9.0), while xylanase optimum activity temperature was 50°C and pH in the range of 3.0 to 5.0. CMCase activity remained stable for 24 hours at 50°C a

4.
Acta sci., Biol. sci ; 40: 41512-41512, 20180000. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460803

ABSTRACT

The conversion of agroindustrial residues by microorganisms has been explored from fermentative processes to obtain several bioactive molecules. The objective of this work was to isolate and select filamentous fungi present in cassava liquid waste for the production of amylase, carboxymethylcellulose (CMCase), pectinase and xylanase using the same residue as induction substrate in fermentative processes. A total of 65 filamentous fungi were isolated and qualitative tests indicated that approximately 86% of these strains were able to produce at least one of the enzymes and 32% capable of producing the four enzymes. Fermentation assays in cassava liquid residue-containing medium showed 6 fungal lines as potential enzyme producers. The maximum activities of pectinase, xylanase, amylase and CMCase were respectively observed at 96 hours of fermentation by the strain by the strain Aspergillus sp. B5C; at 120 hours (163.6 ± 0.13 nKat mL-1), by Aspergillus sp. B4I; at 144 hours (99.8 ± 0.24 nKat mL-1), by Penicillium sp. B3A; and at 48 hours (55.5 ± 0.21 nKat mL-1), by Aspergillus sp. B4O. These results suggest that cassava liquid waste was source of filamentous fungi producing amylase, CMCase, pectinase and xylanase, as well as a promising alternative substrate for bioprocesses aiming the production of enzymes.


A conversão de resíduos agroindustriais por micro-organismos tem sido explorada a partir de processos fermentativos para obtenção de diversas moléculas bioativas. O objetivo deste trabalho foi isolar e selecionar fungos filamentosos presentes em manipueira para produção de amilase, carboximetilcelulase (CMCase), pectinase e xilanase utilizando o próprio resíduo como substrato indutor. Um total de 65 fungos filamentosos foi isolado e testes qualitativos indicaram que, aproximadamente, 86% dessas linhagens foram hábeis em produzir pelo menos uma das enzimas e 32% capazes de produzir as quatro enzimas. Ensaios fermentativos em meio contendo manipueira apontaram 6 linhagens fúngicas como potenciais produtoras de enzimas. As atividades máximas de pectinase, xilanase, amilase e CMCase foram observadas, respectivamente, às 96 horas de fermentação (67.4 ± 0,6 nKat mL-1), pela linhagem Aspergillus sp. B5C; às 120 horas (163.6 ± 0,13 nKat mL-1), por Aspergillus sp. B4I; às 144 horas (99.8 ± 0,24 nKat mL-1), por Penicillium sp. B3A; e às 48 horas (55.5 ± 0,21 nKat mL-1), por Aspergillus sp. B4O. Estes resultados sugerem a manipueira como fonte de fungos filamentosos produtores de amilase, CMCase, pectinase e xilanase, além de um promissor substrato alternativo para bioprocessos visando a produção dessas enzimas.


Subject(s)
Amylases , Fermentation , Fungi/enzymology , Polygalacturonase
5.
Acta sci., Biol. sci ; 40: e36904, 20180000. tab, graf
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1460841

ABSTRACT

The effect of successive soil contamination with diesel oil was evaluated on population dynamics of a bacterial consortium (Acinetobacter baumannii LBBMA 04, Pseudomonas aeruginosa LBBMA 58, Ochrobactrum anthropi LBBMA 88b, Acinetobacter baumannii LBBMAES11, and Bacillus subtilis LBBMA 155) and on biodegradation of petroleum hydrocarbons (n-C12-C22). After each contamination with diesel oil, soil samples were collected for assessment of bacterial population and sequence of petroleum hydrocarbons degradation. At 20 and 40 days, the highest percentage of degradation was observed for the higher carbon chain hydrocarbons (n-C21 and C22). After the third contamination, there was a considerable reduction of n-C21degradation and a high degradation of hydrocarbons n-C13-15, C17 and C19, which contrasts with the low values of degradation of these hydrocarbons in the two previous phases. The highest growth rate of all members of the consortium occurred from 0 to 20 days, but population increase continued up to the end of the experiment (except for B. subitillis strain, whose population stabilized after 20 days). Our results show that the recurrent contamination by hydrocarbons affected the population structure of bacterial consortium and increased the total population density of the bacterial consortium.


O efeito da contaminação do solo com óleo diesel foi avaliado sobre a dinâmica populacional bacteriana de um consórcio (Acinetobacter baumannii LBBMA 04, Pseudomonas aeruginosa LBBMA 58, Ochrobactrum anthropi LBBMA 88b, Acinetobacter baumannii LBBMAES11 e Bacillus subtilis LBBMA 155) e sobre a biodegradação de hidrocarbonetos de petróleo (n-C12-C22). Após cada evento de contaminação com óleo diesel, foram coletadas amostras de solo para avaliação das populações bacterianas e da sequência de degradação de hidrocarbonetos de petróleo. Aos 20 e 40 dias, a maior porcentagem de degradação foi observada para os hidrocarbonetos de cadeia de carbono mais elevada (n-C21 e C22). Após a terceira contaminação, houve redução considerável da degradação de n-C21 e alta degradação dos hidrocarbonetos n-C13-15, C17 e C19, o que contrasta com os baixos valores de degradação desses hidrocarbonetos nas duas fases anteriores. A maior taxa de crescimento de todos os membros do consórcio ocorreu entre 0 e 20 dias, mas o aumento populacional continuou até o final do experimento (com exceção da linhagem B. subitilis, cuja população se estabilizou após 20 dias). Os resultados mostram que a contaminação sucessiva do solo com óleo diesel afetou a estrutura populacional do consórcio bacteriano e proporcionou aumento da densidade populacional total das bactérias.

6.
Braz. j. microbiol ; 48(2): 342-351, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839370

ABSTRACT

Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.


Subject(s)
Soil Microbiology , Soil Pollutants/metabolism , Gasoline , Carcinogens, Environmental/metabolism , Biota/drug effects , Biodegradation, Environmental , Carbon Dioxide/analysis , Bacterial Load , Hydrocarbons/analysis
7.
Braz. j. microbiol ; 40(1): 111-121, Jan.-Mar. 2009. graf, tab
Article in English | LILACS | ID: lil-513126

ABSTRACT

The aim of this work was to evaluate the occurrence of arbuscular mycorrhizal fungi (AMF) species diversity in soil samples from the Amazon region under distinct land use systems (Forest, Old Secondary Forest, Young Secondary Forest, Agroforestry systems, Crops and Pasture) using two distinct trap cultures. Traps established using Sorghum sudanense and Vigna unguiculata (at Universidade Regional de Blumenau - FURB) and Brachiaria decumbens and Neonotonia wightii (at Universidade Federal de Lavras - UFLA) were grown for 150 days in greenhouse conditions, when spore density and species identification were evaluated. A great variation on species richness was detected in several samples, regardless of the land use systems from where samples were obtained. A total number of 24 AMF species were recovered using both methods of trap cultures, with FURB';s traps yielding higher number of species. Acaulospora delicata, A. foveata, Entrophospora colombiana and two undescribed Glomus species were the most abundant and frequent species recovered from the traps. Number of species decreased in each genus according to this order: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora and Paraglomus. Spore numbers were higher in Young Secondary Forest and Pastures. Our study demonstrated that AMF have a widespread occurrence in all land use systems in Amazon and they sporulate more abundantly in trap cultures from land uses under interference than in the pristine Forest ecosystem.


O objetivo deste trabalho foi avaliar a ocorrência de espécies de fungos micorrízicos arbusculares (FMAs) em amostras de solos da região Amazônica sob diferentes sistemas de uso da terra (Floresta, Capoeira Velha, Capoeira Nova, Sistema Agroflorestal, Culturas e Pastagens) usando dois métodos de culturas armadilhas. Culturas armadilhas estabelecidas com Sorghum sudanense e Vigna unguiculata (na Universidade Regional de Blumenau - FURB) e Brachiaria decumbens e Neonotonia wightii (na Universidade Federal de Lavras - UFLA) foram cultivadas por 150 dias em condições de casa-de-vegetação e avaliadas para o número de esporos e identificação das espécies. Uma grande variação na riqueza de espécies foi detectada em várias amostras, independente do sistema de uso da terra de onde as amostras foram obtidas. Um total de 24 espécies de FMAs foram recuperadas usando ambas metodologias de culturas armadilhas e as culturas estabelecidas na FURB produziram um número maior de espécies. Acaulospora delicata, A. foveata, Entrophospora colombiana e duas espécies não descritas de Glomus foram as espécies mais abundantes e freqüentes recuperadas das culturas armadilhas. O número de espécies diminui em cada gênero na seguinte ordem: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora e Paraglomus. Número de esporos foi maior na Capoeira jovem e Pastagens. Nosso estudo demonstrou que os FMAs possuem uma ampla dispersão em todos os sistemas de uso na Amazônia e que eles esporulam mais abundantemente em culturas armadilhas estabelecidas de solos sob interferência antrópica do que em solos de Floresta nativa.


Subject(s)
Environmental Microbiology , Fungi/genetics , Fungi/isolation & purification , Genetic Variation , Mycorrhizae/genetics , Pasture , Soil , Spores, Fungal , Methods , Methods , Trees
SELECTION OF CITATIONS
SEARCH DETAIL